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A flux-difference splitting method based on the polynomial character of the flux vectors is 
applied to steady Euler equations. The discretization is done with a vertex-centered finite 
volume method. In first-order form, a discrete set of equations is obtained which is both con- 
servative and positive. The flux-difference splitting is done in an algebraically exact way, so 
that shocks are represented without wiggles. Due to the positivity, the set of equations can be 
solved by collective relaxation methods. A full multigrid method based on symmetric 
successive relaxation, full weighting, bilinear interpolation and W-cycle is presented. In Iirst- 
order form, typical full multigrid efficiency is achieved. This is demonstrated on the GAMM 
transonic bump test-case. The second-order formulation is based on the Roe-Chakravarthy 
minmod-limiter. The discrete system is solved using a multigrid defect-correction formulation. 
The second-order formulation is demonstrated on Harten’s shock reflection problem. 0 1990 
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1. INTRODUCTION 

A flux-difference splitting method based on the polynomial character of the flux- 
vectors was introduced by the author in [l]. This splitter has properties which are 
similar to the splitter introduced by Roe [2]. In contrast to Roe’s splitter, which 
is based on the quadratic character of the flux-vectors with respect to the variables 
A, & U, & u, &H, the splitter relies only on the polynomial character with 
respect to the primitive variables p, U, u, p, avoiding in this way square root evalua- 
tions. The polynomial splitter was inspired by earlier work by Lombard et al. [3], 
where the same idea was used in an approximate way. An algebraically exact 
formulation, however, is necessary to arrive at discrete equations which can be 
solved by relaxation methods. 

Multigrid formulations using this technique, with first order accuracy were 
presented by the author in [4, 51. In this paper, the principles of the splitting are 
briefly reviewed and the multigrid formulation in first order form and second order 
form, using defect correction, is discussed. 
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2. POLYNOMIAL FLUX-DIFFERENCE SPLITTING 

Steady Euler equations, in two dimensions, take the form 

where the flux-vectors are 

df+!LO, 
ax ay (1) 

f T = { PK PUU + p, PW PffU}, 

gT = { ~0, PW PVV + P, PHo}; 
(2) 

p is density, u and u are Cartesian velocity components, p is pressure, H = 
yp/(y - 1)~ + ;u’+ iv’ is total enthalpy and y is the adiabatic constant. Since the 
components of the flux-vectors form polynomials with respect to the primitive 
variables p, U, u, and p, components of flux-differences can be written as 

Apu=UAp+~Au, 

A(puu+p)=pUAu+UApu+Ap 

=U2Ap+(pU+/%)Au+Ap, 

ApHu = pU -+2+~~~2 +i(;i+;i)Apu+ 
> 

y Apu 
Y-1 

-- +~+~)udp+;(~+~)~Au+puuAu 

-- +~~Au+puvAu+ Y - 
Y-1 

-uAp, 
Y-l 

etc., where the bar denotes mean value. 
With the definition of 4 = $(3 + 7), the flux-difference Af can be written as 

Is”2 

i- 

P 0 0 
pii+pu 0 1 

Af= ;fi ,627 pii 0 

1 

A59 

y qu &i+piu+- 
Y-1 

p pufi Yfj 
Y-l 

where tT = {p, u, v, p}. 
With the definition of ~7 by pzY=iZ& the flux-difference Af is given by 

Af=( p!ti piG j) (i ; i j)At. (3) 



MULTIGRID FLUX-DIFFERENCE SPLITTING 163 

By denoting the first matrix in (3) by T, it is easily seen that the flux-difference dg 
can be written in a similar way as 

Ag= T Ag= T A& A& 

where p V= = pV. 
Any linear combination of Af and Ag can be written as 

AqS=n,Af+n,Ag=AA~=TA”A~, 

where 

(4) 

(5) 

(6) 

with ti=n,ii+n,fi, G=nn,i+n,C. 
It is easy to verify that the matrix 2 has real eigenvalues and a complete set of 

eigenvectors [ 11. For nf + n: = 1, the eigenvalues are given by 

where 

kG=((w+ry)/2 and c2 = yjilp + ( w - G)2/4. 

Following the procedure of Steger and Warming [6], the matrix A” can be split 
into positive and negative parts by 

ii+ =RA+L, A”- =RA-L, (7) 

where R and L denote right and left eigenvector matrices, in orthonormal form and 
where 

n+=diag(n:,n:,n:,~:), /i-=diag(~;,~;,~,,~,), 

with A,? = max(A,, 0), 2; = min(ili, 0). 
With positive and negative matrices, matrices with respectively non-negative and 

non-positive eigenvalues are meant. This allows a splitting of the flux-difference (5) 
by 

Ad=A+ A(+A- A<, (8) 

with A+ = TAI+ 3 A-=TA-. 

581/91/l-12 
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In order to justify (8), it is important to remark that the matrix T is the discrete 
analogue of the similarity transformation matrix between conservative and 
primitive variables. Indeed, one verifies that 

where CT= (p, pu, pv, pE), with total energy E = p/(y - 1)~ + 4~” + iv’. Hence 

A# = A At = TA” A{ = TAT-’ Ai = TRALT PI Ai = TRAL A& (9) 

As a consequence, a splitting of 2 results in a splitting of A. 

3. CONSTRUCTION OF A POSITIVE DISCRETIZATION 

Figure 1 shows the control volume centered around the node (i, j). With 
piecewise constant interpolation of variables, the flux-difference over the surface 
si+ l/2 of the control volume can be written as 

AFj,i+ L = AYi+ l/2 AL,;+ I + Axi+ I/Z Agi,i+ 1 

= ASi+ I/.T(T~ Ah,{+ 1 + ny Agi,i+ 11, (10) 

where AsT+~,~=Ax?+,,~+AY~+~/~, n,=AYi+dAsi+~~2~ n,=Axi+l121Asi+1/2; n, 

and ny denote the components of the unit outgoing normal to the control surface. 
With the notation of the previous section, the flux-difference is 

AFi,i+l =F;+ 1 -Fi=Asi+ lp.At.i+l Ati,i+ 1’ (11) 

Furthermore, the matrix Ai,i+ 1 can be split into positive and negative parts. This 
allows the definition of the absolute value of the flux-difference by 

IAF~,~+~I=As~+,,~(A~+,-A,~+,)A~;,~+~. (12) 

i 

\ i,j-I 

FIG. 1. Vertex-centered finite volume formulation. 
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Based on (12) an upwind definition of the flux is 

(13) 

That this represents an upwind flux can be verified by writing (13) in either of the 
two following ways, which are completely equivalent: 

Fi+l/2=Fi+4dFi,i+l-$ IdFi,i+ll 

=Fi+dsi+l/2A,+, dli,i+l7 (14) 

Fi+,,*=~i+l-~dF,,i+,-~ IdFi,i+ll 

=Fi+ 1 -dsi+ IpA;+ 1 d<i,i+ 1’ (15) 

Indeed, when Ai,i+l only has positive eigenvalues, the flux Fi+ ,,* is taken to be Fi 
and when Ai,i+l only has negative eigenvalues, the flux Fi+ 1,2 is taken to be Fi+ i. 

The fluxes on the other surfaces of the control volume Si- 1,2, Sj+ i,*, Sj_ r12, can 
be treated in a similar way. With (14) and (15), the flux balance on the control 
volume of Fig. 1 has the form 

ASi + 112 A,+ ,C5i+ 1 -5il+Asi-,/2Aiti-,C5i-4i-,l 

+ Asj+ 1/2A,yj+ lCtj+ I -~j]+A~j-,,2A~j_,[5j-5,~1]=0. (16) 

The set formed by Eq. (16) for all nodes is a so-called positive set. This can be seen 
by writing (16) as 

Cgi,j=Asi-,,2Aiti-,5i-1+Asi+,,2(-A,~+,)~i+, 

+As. I-1/2Ai:l--1j--++sj+,/2(-A,~j+1)rj+1 > (17) 

where C is the sum of the matrix-coefficients in the right-hand side and where these 
coefficients have non-negative eigenvalues. 

As a consequence of the positivity, a solution can be obtained by a collective 
variant of any scalar relaxation method. By a collective variant it is meant that, in 
each node, all components of the vector of dependent variables r are relaxed 
simultaneously. 

In practise, the flux-balance (16) is formed by summing expressions of type (14) 
over all surfaces, using the appropriate components of the unit outgoing normal n, 
and nY in the definition of the Jacobian (6). 

4. BOUNDARY CONDITIONS 

Figure 2 shows the half-volume centered around a node on a solid boundary. 
This half-volume can be seen as the limit of a complete volume in which one of 
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FIG. 2. Treatment of boundary conditions. 

the sides tends to the boundary. As a consequence, the flux on the side Si of the 
boundary control volume can be expressed according to (14) by 

4 + dsiA,j(Si+ I - lily (18) 

where the matrix AZ~j is calculated in the node (i, j). 
With the definition (18), the flux balance on the control volume at the boundary 

takes the form (16) in which a node outside the domain comes in. This node, 
however, can be elimiated. On a solid boundary, two eigenvalues of the matrix A”i,j 
are zero due to the boundary condition of tangentiality: 

l,=W=O, A,=G=O. 

The third and the fourth eigenvalues are given by 

As a consequence, the rank of the matrix A.,yj is equal to one. This means that 
premultiplication of the flux-balance on a solid boundary by I, j Tu’, where I, j is 
a left eigenvector associated to a zero eigenvalue of A”u, yields an equation where 
the outside node is eliminated. This results in three equations. These are to be sup- 
plemented by the boundary condition of tangentiality. A similar procedure can be 
used at inflow and at outflow. At subsonic inflow, (18) yields one equation that 
requires three additional relations to be prescribed by the boundary conditions. At 
subsonic outflow, (18) yields three equations and one boundary condition is to be 
given. Physically, as inlet boundary conditions, stagnation pressure, stagnation 
temperature, and flow direction are to be prescribed. At outlet, the Mach number 
can be prescribed. Explicit expressions of the combinations of the equations at 
boundaries are given in [ 11. 

Due to the linearity of the condition of impermeability, the set of equations on 
a solid boundary is a quasi-linear set which is similar to the set in the flow field. 
At inflow and outflow boundaries, the physical boundary conditions are highly 
non-linear combinations of the primitive variables. Therefore, the introduction of 
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the boundary conditions at inlet and outlet, in the way described above, 
necessitates iteration. This complicates the algorithm. Therefore, it is better to treat 
the nodes at inlet and outlet as auxiliary points and to determine the variables in 
these points by extrapolation. At inlet, Mach number is extrapolated along 
streamlines. Together with the given boundary conditions, this determines all flow 
variables in a direct way. At outflow the stagnation values and the flow direction 
are extrapolated along streamlines. Together with the prescribed Mach number, 
again this determines all flow variables in a direct way. 

5. MULTIGRID FORMULATION FOR A TRANS~NIC APPLICATION 

Figure 3 shows the well-known GAMM-test case [7] for transonic flows, 
discretized by a grid with 24 x 8 elements. This grid is the third in a series of four. 
The finest grid has 96 x 32 elements. Vertex-centered finite volumes, as indicated in 
Fig. 2, were used. At inflow, the specification of a horizontal flow direction was used 
as boundary condition. At outflow, the Mach number was fixed at 0.85. 

Figure 4 shows the iso-Mach lines for the fully converged solution plotted by 
piecewise linear interpolation within the elements of the grid. The obtained solution 
almost coincides with the solutions obtained from the most reliable time-marching 
methods reported in [7]. However, unlike most time-marching solutions, due to 
the guaranteed positivity, the solution has no wiggles in the shock region. 

Figure 5 shows the cycle-structure of the multigrid method. Both the starting 
cycle and the repeated cycle have W-form. A full approximation scheme (FAS) on 
the non-linear equations (17) is used. The relaxation algorithm is symmetric 
Gauss-Seidel. The order of relaxation is the lexicographic order, i.e., going from the 
lower left point to the upper right point, first varying the row index, and then going 
from the upper right point to the lower left point in the reverse order. In relaxing 
the set of Eq. (17), the coefficients are formed ‘with the latest available information. 
This means that in the first sweep A& I is evaluated with the function values in 

FIG. 3. The GAMM-test case for transonic flows, discretized with a 24 x 8 grid. 
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FIG. 4. Iso-Mach lines for the testcase of Fig. 3 on the 96 x 32 grid. 

node (i, j) on the new level. After determination of the new values in node (i, j), no 
updates of coefficients and no extra iterations are done. This means that the set of 
Eq. (17) is treated as a quasi-linear set. As restriction operator for residuals, full 
weighting is used within the flow field while injection is used at the boundaries. The 
prolongation operator is bilinear interpolation. The restriction for function values 
is injection. The calculation starts from a uniform flow with Mach number 0.85 on 
the coarsest grid (12 x 4). 

The multigrid procedure for the first-order formulation used here is very similar 
to the one formulated by Hemker and Spekreijse [8]. The differences with this 
earlier work are that here a vertex-centered formulation is used instead of a cell- 
centered formulation and that the polynomial flux-difference splitting with respect 
to primitive variables is used instead of the Osher-splitting [9] with respect to 
entropy variables. 

In Fig. 5, the operation count is indicated. A relaxation on the current grid is 
taken as one local work unit. So, the symmetric relaxation is seen as two work 
units. A residual evaluation plus the associated grid transfer is also taken as one 
local work unit. Hence, the 4 in Fig. 5, in going down, stands for the construction 
of the right-hand side in the FAS-formulation, two relaxations, and one residual 
evaluation. With this way of evaluating the work, the cost of the repeated cycle is 
9.4375 work units on the finest level. The cost of the starting cycle is 5.1875 work 
units. 

Figure 6 shows the convergence behaviour of the single grid and the multigrid 

FIG. 5. Cycle-structure of the multigrid method. 
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FIG. 6. Convergence 

100 200 

history of single grid and multigrid formulation for the transonic test case. 

formulation. The residual shown is the maximum residual of all equations, after 
normalizing these equations, i.e., setting the coefficient of p, U, u, and p on 1 in the 
mass, momentum-x, momentum-y, and energy equations, respectively, and dividing 
the variables by their value in the initial uniform flow. 

The convergence factor of the multigrid method, i.e., the residual reduction per 
work unit is about 0.895 or about 0.355 per cycle. This can be considered as being 
optimal. 

6. SECOND-ORDER FORMULATION 

Figure 7 shows Harten’s well-known shock reflection problem, together with the 
first-order solution obtained by the previous method, using a rectangular 96 x 32 

FIG. 7. Harten’s shock reflection problem with iso-Mach lines of the first-order solution for a 
96 x 32 grid. 
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elements grid. The smoothing of the oblique shocks is evident. In order to obtain 
second-order accuracy, the definition of the flux (13) is modified. 

First, we remark that, using (9), the flux-difference (11) can be written as 

(19) 

where the superscript n refers to the nth eigenvalue and where r” and I” denote the 
nth right and left eigenvectors. 

By denoting the projection of A<i.i+ r on the nth eigenvector by 

and using 

(19) can be written as 

AFi,i+ 1 =I AF;i+ 1 =Asi+ l/2 C Fl+ l/221+ 1/2~?+ 112 
n ” 

=C~r+l,2~:+,,2~ (20) 
” 

where AFY i + , denotes the component of the flux-difference associated to the n th 
eigenvalue ‘and r;+ 1,2 is the projection of the flux-difference on the n th eigenvector. 

Using (20), the first-order flux (13) can be written as 

Fi + 112 =~(Fi+Fi+~)-~CAF::+,+~CAF:,,, (21) 
n n 

where the + and - superscripts denote the positive and negative parts of the com- 
ponents of the flux-difference, i.e., the parts obtained by taking the positive and 
negative parts of the eigenvalues. 

According to Chakravarthy and Osher [lo], a second-order flux corresponding 
to (21) can be defined by 

where 

with a similar definition for d^i;;;, i+2. 

(22) 

(23) 
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Clearly (23) is constructed by considering a flux-difference over the surface 
si+ l/29 i.e., using the geometry of this surface, with data shifted in the negative 
i-direction. rl- ,,2 represents the projection of this flux-difference on the nth eigen- 
vector of the unshifted flux-difference. 

Definition (22) corresponds to a second-order upwind flux. This easily can be 
seen by considering the case where all eigenvalues have the same sign. Second-order 
accuracy also can be reached by taking a central definition of the flux vector: 

Fi+1/2=+(Fi fFi+l). (24) 

As is well known, using either (22) or (24) leads to a scheme which is not 
monotonicity preserving so that wiggles in the solution become possible. Following 
the theory of the flux limiters [ll], a combination of (22) and (24) is taken. This 
takes the form 

(25) 

with 

L?F:T,,~ = Lim(zF;zl,i, AF;T+ I), (26) 

TF:;,,i+2 = Lim(d7F?;,,i+2, AF;;+ ,), (27) 

where Lim denotes some limited combination of both arguments. We choose here 
the simplest possible form of a limiter, i.e., 

Lim = MinMod, 

where the function MinMod returns the arguments with minimum absolute value 
if both arguments have the same sign and returns zero otherwise. By the use of the 
limiter to the vectors (26), (27) it is meant that the limiter is used component-wise, 
i.e., applied to the r-values. 

At boundaries and in the vicinity of boundaries, some of the flux-differences in 
(26) or (27) do not exist. In this case, the limiter returns a zero. This does not 
cause a degradation of the second-order accuracy at boundaries, since due to the 
construction of the boundary equations no information is taken from nodes outside 
the flow field. 

Figure 8 shows the solution obtained with the second-order formulation for 
Harten’s shock reflection problem. Since for the discretization obtained by the 
second-order formulation, the positivity is not guaranteed, a relaxation method on 
this formulation is impossible. Therefore as a solution procedure a defect-correction 
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FIG. 8. Iso-Mach lines for the second-order solution of Harten’s shock reflection problem. 

formulation was used. By denoting symbolically the first-order and second-order 
formulation on the finest grid by 

(28) 

(29) 

a defect correction means that (28) is replaced by 

Li = r; + [(Lt, - ri) - (Li - ri)], (30) 

where L and r indicate left- and right-hand sides. 
In (30) the difference of the defects of the first- and second-order discretization 

is added to the right-hand side. The defect-correction is only performed on the 
finest grid so that the multigrid formulation of the first-order discretization still can 
be used. For a principal description of the defect-correction approach, the reader is 
referred to [12] and for the application to steady Euler equations to [13]. 

Figure 9 shows the convergence behaviour of the first- and second-order multi- 
grid methods. The defect-correction was used from the first cycle. The calculation 

WU 
44 

100 zoo 

FIG. 9. Convergence history of first- and second-order multigrid formulation, compared with second- 
order single grid formulation for Harten’s shock reflection problem. 
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starts from a uniform flow with Mach number 2.9 on the coarsest grid. In calculat- 
ing the work units in Fig. 9, the work involved in the calculation of the difference 
of the defects was taken to be 1.75 work units. This amount of work was 
determined from actual computing times. The residual reduction in the first-order 
formulation is 0.220 per cycle ( = 9.4375 work units). For the second-order 
formulation it degrades to about 0.720 per cycle. This efficiency loss is comparable 
to the loss suffered by Koren and Spekreijse [14] with a similar defect-correction 
formulation, however, using a completely different splitting and a completely 
different limiter. 

For reasons of comparison, in Fig. 9, also the single grid performance, using 
defect correction is indicated. One defect-correction is done for each symmetric 
relaxation so that the work spent in a single grid operation is 3.75 work units. 

7. CONCLUSION 

It has been shown that, by the use of an adequate flux-difference splitting techni- 
que, a multigrid method can be obtained for steady Euler equations. The usual 
multigrid performance is obtained. 
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